Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Ford 6.8L Hydrogen IC Engine for the E-450 Shuttle Van

2007-10-29
2007-01-4096
Ford Motor Company is researching and developing multiple propulsion strategies which include advanced gasoline engines, clean diesel, flexible fuel (ethanol blends up to E-85), hybrids and hydrogen propulsion, both in internal combustion (IC) engines and fuel cells. Hydrogen utilized as a transportation fuel is viewed as a long term solution as it is sustainable and clean when derived from renewable resources. The development and use of hydrogen IC engine (H2ICE) technology can readily be utilized to drive the transition strategy from the petroleum economy to the hydrogen economy. Because the “more conventional” H2ICE systems can be brought to market more quickly and in higher volume, business initiatives for hydrogen fueling infrastructure and other hydrogen complimentary required technologies can be realized sooner. To that end Ford has fully re-engineered a 6.8L Triton V-10 engine to run on hydrogen and power an E-450 shuttle van.
Technical Paper

CFD Quality - A Calibration Study for Front-End Cooling Airflow

1998-02-23
980039
There is a recognized need in the industry to improve the quality of our CFD (Computational Fluid Dynamics) processes. One part of that initiative is to measure the accuracy of the current processes and identify opportunities for improvement. This report documents the results of a disciplined calibration process that uses statistical analyses techniques to assess CFD quality. The process is applied to UH3D, a Navier-Stokes solver used at Ford to model vehicle front-end geometry and engine cooling systems. The study is focused on a Taurus under relatively ideal circumstances to address one of the major deliverables from the analytical process, i.e., what is the accuracy of the front-end cooling airflow predictions? To address this question, high quality isothermal experiments and calculations were conducted on twenty-three front-end configurations at four non-idle operating conditions.
Technical Paper

Engineering Challenges with Vehicle Noise and Vibration in Product Development

2007-05-15
2007-01-2434
Vehicle noise and vibration (NVH) is among the important attributes of the vehicle. This attribute has to be designed for in the product development process. This produces challenges that are usually overlooked by researchers in the field. These challenges are assessed in this manuscript. The emphasis here is on the NVH phenomenon at the vehicle level. Little work is being done to study the vehicle noise and vibration from a system or customer perspective. This manuscript brings to the attention of researchers and the NVH community at large the various NVH challenges that constitute complexities to the development engineer and may deserve closer attention.
Technical Paper

Fuel Injection Strategies to Increase Full-Load Torque Output of a Direct-Injection SI Engine

1998-02-23
980495
Fuel-air mixing in a direct-injection SI engine was studied to further improve full-load torque output. The fuel-injection location of DI vs. PFI results in different heat sources for fuel evaporation, hence a DI engine has been found to exhibit higher volumetric efficiency and lower knocking tendency, resulting in higher full-load torque output [1]. The ability to change injection timing of the DI engine affects heat transfer and mixture temperature, hence later injection results in lower knocking tendency. Both the higher volumetric efficiency and the lower knocking tendency can improve engine torque output. Improving volumetric efficiency requires that the fuel is injected during the intake stroke. Reducing knocking tendency, in contrast, requires that the fuel is injected late during the compression stroke. Thus, a strategy of split injection was proposed to compromise the two competing requirements and further increase direct-injection SI engine torque output.
Technical Paper

Optimal A/F Ratio Estimation Model (Synthetic UEGO) for SI Engine Cold Transient AFR Feedback Control

1998-02-23
980798
A new method to estimate instantaneous A/F ratio and use the estimation as a feedback signal to control AFR during cold transients, before the oxygen sensor is functional, has been realized by a on-board PCM for a vehicle with a 4.6L, V8, PFI engine [4, 6]. Different AFRs cause variations in flame propagation, causing fluctuations in the effective torque. When a known AFR disturbance is induced into an engine system, a corresponding crankshaft angular velocity fluctuation can be detected. A variable derived from this physical phenomenon can be used to characterize the problem. The optimal fuel perturbation signal is designed by a relaxation concept, and the system model is determined by employing a dual-direction screening multivariate stepwise regression analysis. The estimated AFR is used by the PCM in a closed loop control to correct the fuel during cold transients.
Technical Paper

Measurement of Acoustical Response of Automotive Cabin Interior

1990-02-01
900047
We report measurements of interior automotive cabin forced acoustical response (SPL) as a function of frequency from 1 Hz to 200 Hz. The acoustical response was measured at eight positions in the vehicle tested, approximating the positions of passengers and points in between passengers. Variances in experimental data arising from the manner in which measuring equipment is setup in a particular vehicle are reported, and variations in data taken in similarly equipped vehicles are also reported. The purpose of these tests is to determine the measurement variability of a typical vehicle acoustic test.
Technical Paper

Two Piece Composite Truck Cab

1990-02-01
900306
This report is a comprehensive investigation into the use of resin transfer molded glass fiber reinforced plastics in a structural application. A pickup truck cab structure is an ideal application for plastic composites. The cab is designed to fit a production Ranger pickup truck and uses carryover frame and front end structure. The cab concept consists primarily of two molded pieces. This design demonstrates extensive parts integration and allows for low-cost tooling, along with automated assembly.
Technical Paper

Engine Oil Viscosity Sensors Using Disks of PZT Ceramic as Electromechanical Vibrators

1997-05-01
971702
Experimental forms of two different types of engine oil viscosity sensors have been tested that use uniformly poled disks of piezoelectric PZT ceramic. In both cases, the disks were used to form electromechanical resonators functioning as the frequency-controlling element in a transistor oscillator circuit. The simpler type of sensor used only one disk, vibrating in a radial-longitudinal mode of vibration. In this mode, a disk 2.54 cm in diameter and 0.127 cm thick had a resonant frequency of approximately 90 kHz. The second type of sensor used two such disks bonded together by a conducting epoxy, with poling directions oriented in opposite directions. This composite resonator vibrated in a radially-symmetrical, flexural mode of vibration, with the lowest resonant frequency at approximately 20 kHz. The presence of tangential components of motion on the major faces of both resonators made them sensitive to the viscosity of fluids in which they were immersed.
Technical Paper

Initial Evaluation of a Spill Valve Concept for Two-Stroke Cycle Engine Light Load Operation

1990-09-01
901663
Two-stroke cycle direct injection engines can achieve adequate stability at idle with stratified combustion at very lean overall air-fuel ratio, but exhaust temperature is very low. A rotary valve system was designed to spill charge from the cylinder into the intake tract during the compression stroke, in order to allow stable operation at lower engine delivery ratio and thereby increase exhaust temperature. Reduction of the engine delivery ratio was not achieved due to the poor scavenging characteristics of the swirl liners used, which resulted in high content of exhaust residual gas in the spill recirculation flow. Although the concept objective of higher exhaust temperature was not realized, the results indicate that the concept may be feasible if high purity of the spill recirculation flow can be achieved in conjunction with high trapping efficiency.
Technical Paper

Examination of the Corrosion Behavior of Creep-Resistant Magnesium Alloys in an Aqueous Environment

2007-04-16
2007-01-1023
An electrochemical testing protocol for assessing the intrinsic corrosion-resistance of creep-resistant magnesium alloys in aqueous environments, and effects of passivating surface films anticipated to develop in the presence of engine coolants is under development. This work reports progress in assessing the relative corrosion resistance of the base metals (AMC-SC1, MRI-202S, MRI-230D, AM50 and 99.98% Mg) in a common test environment, based on a near-neutral pH buffered saline solution, found to yield particularly stable values for the open-circuit or corrosion potential. This approach was found to provide a platform for the eventual assessment of the durability of certain passivating layers expected to develop during exposure of the magnesium alloys to aqueous coolants.
Technical Paper

Power Steering Noise Characterization and Evaluation

2008-03-30
2008-36-0550
Each more the consumer uses the vehicle noise, vibration, and harshness (NVH) attributes to define the vehicle model when purchasing a car, so the sound quality development is very important to guarantee the automaker success in a competitive market. Several vehicle components contribute to the consumer sound quality perception, as engine, gearbox and exhaust systems. So those components improvement is necessary in order to enrich the sound perception. In this article will be developed a case study that evaluates the contribution and the characteristics of the irradiated noise from the power steering system, which was classified as moan, whine and hiss noise, defines objectively each phenomena and evaluate the proposed systems.
Technical Paper

The Effects of Injector Targeting and Fuel Volatility on Fuel Dynamics in a PFI Engine During Warm-up: Part II - Modeling Results

1998-10-19
982519
The effects of injector targeting and fuel volatility on transient fuel dynamics were studied with a comprehensive quasi-dimensional model and compared with experimental results from Part I of this report (1). The model includes the transient, convective vaporization of four multi-component fuel films coupled with a transient thermal warm-up model for realistic valve, port and cylinder temperatures (2, 3). Two injector targetings were analyzed, first with the fuel impacting the intake valve and in addition, the fuel impacting the port floor directly in front of the intake valve. The model demonstrates the importance of both component temperature and fuel impaction area on fuel vaporization, transient air fuel ratio (AFR) response and the amount of liquid fuel entering the cylinder. Generally, a smaller injector footprint area will lead to more liquid fuel entering the cylinder even if the spray is targeted at the back of the intake valve.
Technical Paper

The Occurrence of Flash Boiling in a Port Injected Gasoline Engine

1998-10-19
982522
The occurrence of flash boiling in the fuel spray of a Port Fuel Injected (PFI) spark ignition engine has been observed and photographed during normal automotive vehicle operating conditions. The flash boiling of the PFI spray has a dramatic affect on the fuel spray characteristics such as droplet size and spray cone angle which can affect engine transient response, intake valve temperature and possibly hydrocarbon emissions. A new method of correlating the spray behavior using the equilibrium vapor/liquid (V/L) volume ratio of the fuel at the measured fuel temperature and manifold pressure is introduced.
Technical Paper

Regimes of Premixed Turbulent Combustion and Misfire Modeling in SI Engines

1998-10-19
982611
A review of flame kernel growth in SI engines and the regimes of premixed turbulent combustion showed that a misfire model based on regimes of premixed turbulent combustion was warranted[1]. The present study will further validate the misfire model and show that it has captured the dominating physics and avoided extremely complex, yet inefficient, models. Results showed that regimes of turbulent combustion could, indeed, be used for a concept-simple model to predict misfire limits in SI engines. Just as importantly, the entire regimes of premixed turbulent combustion in SI engines were also mapped out with the model.
Technical Paper

Intra-Parcel Collision Model for Diesel Spray Simulations

2008-10-06
2008-01-2426
Multidimensional models that are used for engine computations must include spray sub-models when the fuel is injected into the cylinder in liquid form. One of these spray sub-models is the droplet interaction model, which is separated into two parts: first, calculation of a collision rate between drops, and second, calculation of the outcome once a collision has occurred. This paper focuses on the problem of calculating the collision rate between drops accurately. Computing the collision rate between drops or particles when they are non-uniformly distributed and sharp gradients are present in their distribution is a challenging task. Traditionally the collisions between parcels of drops have been computed using the same spatial grid as is used for the Eulerian gas-phase calculations. Recently it has been proposed to use a secondary grid for the collision rate calculation that is independent of the gas-phase grid, as is done in the NTC collision algorithm.
Technical Paper

Optimization of Engine Control Strategies During Transient Processes Combining 1-D and 3-D Approaches

2010-04-12
2010-01-0783
One-dimensional simulation methods for unsteady (transient) engine operations have been developed and published in previous studies. These 1-D methods utilize heat release and emissions results obtained from 3-D CFD simulations which are stored in a data library. The goal of this study is to improve the 1-D methodology by optimizing the control strategies. Also, additional independent parameters are introduced to extend the 3-D data library, while, as in the previous studies, the number of interpolation points for each parameter remains small. The data points for the 3-D simulations are selected in the vicinity of the expected trajectories obtained from the independent parameter changes, as predicted by the transient 1-D simulations. By this approach, the number of time-consuming 3-D simulations is limited to a reasonable amount.
Technical Paper

The New Ford 6.7L V-8 Turbocharged Diesel Engine

2010-04-12
2010-01-1101
A new diesel engine, called the 6.7L Power Stroke® V-8 Turbocharged Diesel, and code named "Scorpion" has been designed and developed by Ford Motor Company for the full-size pickup truck and light commercial vehicle markets. It incorporates the latest design technology to meet 2010 model year emission regulations for both chassis and dynamometer-based certifications, and is compatible with up to B20 biodiesel fuel. The engine is an entirely new 90 degree V-8 design featuring inboard exhaust, piezo common rail fuel injection, a new dual compressor wheel turbocharger, and dual loop cooling systems. The 6.7L is Ford's first diesel engine designed for the North American pickup and light commercial truck market.
Technical Paper

The Effects of Oxygenated Biofuel on Intake Oxygen Concentration, EGR, and Performance of a 1.9L Diesel Engine

2010-04-12
2010-01-0868
Exhaust gas recirculation (EGR) has been employed in a diesel engine to reduce NOx emissions by diluting the fresh air charge with gases composed of primarily N2, CO2, H2O, and O2 from the engines exhaust stream. The addition of EGR reduces the production of NOx by lowering the peak cylinder gas temperature and reducing the concentration of O2 molecules, both of which contribute to the NOx formation mechanism. The amount of EGR has been typically controlled using an open loop control strategy where the flow of EGR was calibrated to the engine speed and load and controlled by the combination of an EGR valve and the ratio of the boost and exhaust back pressures. When oxygenated biofuels with lower specific energy are used, the engine control unit (ECU) will demand a higher fuel rate to maintain power output, which can alter the volumetric flow rate of EGR. In addition, oxygenated biofuels affect the oxygen concentration in the intake manifold gas stream.
Technical Paper

Control of Electric to Parallel Hybrid Drive Transition in a Dual-Drive Hybrid Powertrain

2010-04-12
2010-01-0819
Hybrid electric vehicle (HEV) powertrains have become key to developing environmentally friendly and fuel efficient vehicles. As such, companies are continually investing in developing new hybrid powertrain architectures. Ford Motor Company has developed a new “Dual-Drive” full hybrid electric vehicle that overcomes some attribute deficiencies of existing hybrid powertrain architectures due to the kinematic arrangement of the engine, motors and driveline components. This hybrid powertrain is comprised of conventional powertrain components as its base with an electric motor on the rear axle, and a crank integrated starter generator, engine and transmission on the front axle. It forms a complex configuration which provides fuel economy improvement over a conventional powertrain.
Technical Paper

Virtual Engine Dynamometer in Service Life Testing of Transmissions: A Comparison Between Real Engine and Electric Dynamometers as Prime Movers in Validation Test Rigs

2010-04-12
2010-01-0919
A test cell was developed for evaluating a 6-speed automatic transmission. The target vehicle had an internal combustion 5.4L gasoline V8 engine. An electric dynamometer was used to closely simulate the engine characteristics. This included generating mean torque from the ECU engine map, with a transient capability of 10,000 rpm/second. Engine inertia was simulated with a transient capability of 20,000 rpm/second, and torque pulsation was simulated individually for each piston, with a transient capability of 50,000 rpm/second. Quantitative results are presented for the correlation between the engine driven and the dynamometer driven transmission performance over more than 60 test cycles. Concerns about using the virtual engine in validation testing are discussed, and related to the high frequency transient performance required from the electric dynamometer. Qualitative differences between the fueled engine and electric driven testing are presented.
X